
249

A Publication of the Defense Acquisition University http://www.dau.mil

Keywords: Agile, Systems Engineering, Information
Technology (IT), DoD Agile IT Acquisition, IT Box,
Scrum

Inserting Agility in
System Development

Matthew R. Kennedy and Lt Col Dan Ward, USAF

With the fast-paced nature of technology, rapidly fielding
systems has never been more important. Success
depends on well-defined requirements and the ability to
rapidly respond to change during and after deployment.
The inability to rapidly respond may cause the system
to become obsolete before initial fielding. Creating a
structure where processes allow for changes during
system development requires restructuring system
development values and principles at all levels. This
article addresses progress toward agility and defines
agile values and principles being used by agile organi-
zations in the Business, System, and Software Aspects.
It also defines operationally effective agile practices
being utilized to implement those values and principles
that provide a starting point for inserting agility into the
system development process.

Defense ARJ, July 2012, Vol. 19 No. 3 : 249–264 image designed by Diane Fleischer »

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUL 2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Inserting Agility in System Development

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Acquisition University,9820 Belvoir Road, Suite 3,Fort
Belvoir,VA,22060-5565

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

16

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

A Publication of the Defense Acquisition University http://www.dau.mil

251 Defense ARJ, July 2012, Vol. 19 No. 3 : 249–264

With the fast-paced nature of technology, the need to rapidly field
systems has never been more important. Success does not just depend on
well-defined requirements, but also on one’s ability to respond to change
during development, deployment, and post-deployment. The inability
to rapidly respond to change may cause the system to become obsolete
before initial fielding. Creating a structure where processes allow for
changes to occur during system development requires a restructuring
of system development values and principles at all levels.

Three Aspects of a Software
Intensive System Development

Software Intensive System (SIS) development can be understood
as having three aspects: Business, System, and Software. Although
the three aspects sometimes overlap one another, general responsi-
bilities can be attributed to each. The Business Aspect is responsible
for the overall acquisition of the system, including contracting, fund-
ing, operational requirements, and overall system delivery structure.
Next, the System Aspect is responsible for the technical and technical
management aspects of the system, and serves as the interface between
management and engineers. The Software Aspect is responsible for the
software items contained in the SIS. Viewing SIS development through
the lens of these aspects helps highlight components of the work that
are often neglected.

Agility is “the speed of operations within an organization and speed
in responding to customers (reduced cycle times)” (Massachusetts
Institute of Technology, n.d.). It must be incorporated into each aspect.
The degree of agility when developing an Information Technology (IT)
system determines the organization’s ability to respond to change.

Currently, each aspect is at a different maturity in terms of the agile
frameworks and methodologies available. However, the speed at which
changes can be made during development is held captive by the aspect
that is most resistant to change. This article addresses each aspect and
its progress toward agility, and defines the agile values and principles
being used by agile organizations in both the Business and Software
Aspects. It defines agile practices being utilized to implement these
values and principles to provide a starting point for inserting agility into
the system development process.

Inserting Agility in System Development

252Defense ARJ, July 2012, Vol. 19 No. 3 : 249–264

Business Aspect
The Business Aspect is where operational requirements are realized

and the strategy for overall system development is identified. Currently,
the Department of Defense (DoD) uses DoD Instruction (DoDI) 5000.02
to manage how it will perform the acquisition of weapon systems, ser-
vices, and Automated Information Systems (AIS) (DoD, 2008).

Recognizing that the current DoDI 5000.02 was not responsive to
the changing needs of technology, Congress signed the Fiscal Year 2010
National Defense Authorization Act (NDAA), which directed the Sec-
retary of Defense to “develop and implement a new acquisition process
for information technology systems” (NDAA, 2009). This new Defense
Acquisition System process must include:

•	 early and continual involvement of the user;

•	 multiple, rapidly executed increments or releases of
capability;

•	 early, successive prototyping to support an evolutionary
approach; and

•	 a modular, open-systems approach (NDAA, 2009).

Moreover, this process should be based on the March 2009 Report
of the Defense Science Board (DSB) Task Force on Department of Defense
Policies and Procedures for the Acquisition of Information Technology
(NDAA, 2009). The DSB report concluded that “the conventional DoD
acquisition process is too long and too cumbersome to fit the needs of
the many IT systems that require continuous changes and upgrades”
(DSB, 2009). The report also noted that an agile acquisition approach
would increase IT capability and program predictability, reduce cost,
and decrease cycle time.

The DSB has developed an Agile Business Aspect framework, which
is divided into four phases: Business Case Analysis and Development,
Architectural Development and Risk Reduction, Development and Dem-
onstration, and Operations and Support (DSB, 2009).

A Publication of the Defense Acquisition University http://www.dau.mil

253 Defense ARJ, July 2012, Vol. 19 No. 3 : 249–264

Figure 1 depicts the four phases of an Agile Business Aspect Frame-
work (DSB, 2009). A brief description of each phase follows:

•	 Business Case Analysis and Development: “Establish
the need for the proposed capability and develop the concept
for the proposed solution and perform a cost-benefit analy-
sis to quantify the benefits of the solution.”

•	 Architectural Development and Risk Reduction: “The
core architecture is built and architecturally significant
features demonstrated. Prototyping begins during this
phase and continues throughout the acquisition life cycle
to assess the viability of technologies and minimize high-
risk features.”

•	 Development and Demonstration: “The period when
operational capability is built and delivered for a discrete
number of releases. Capabilities are prioritized and parsed
into groupings to establish release baselines for the sub-
programs. Includes development of training programs and
testing in realistic environments to ensure successful field-
ing of new capabilities.”

•	 Operations and Support: “Provides materiel readiness,
user training, and operational support over the total pro-
gram life cycle.”

In addition to the emerging IT Acquisition framework, the DoD
developed an agile requirements process for IT systems called the “IT
Box” (Wells, 2009). The Joint Requirements Oversight Council Memo-
randum 008-08 stated, “IT programs are dynamic in nature and have, on
average, produced improvements in performance every 12–18 months”
(Joint Requirements Oversight Council, 2009). Recognizing the need
for performance improvements, the “IT Box” allows IT programs the
flexibility to incorporate evolving technologies. This allows for greater
agility in the current DoD requirements process.

F
IG

U
R

E
 1

. A
G

IL
E

 B
U

SI
N

E
SS

 A
S

P
E

C
T

M
O

D
E

L

N
o

te
. C

D
D

 =
 C

ap
ab

ili
ti

es
 D

ev
el

o
p

m
en

t
D

o
cu

m
en

t;
 D

T
 =

 D
ir

ec
t

Te
st

; I
C

D
 =

 In
it

ia
l C

ap
ab

ili
ty

 D
o

cu
m

en
t;

 O
T

 =
 O

p
er

at
io

n
al

 T
es

t

M
at

er
ie

l
D

ev
el

op
m

en
t

D
ec

is
io

n

M
ile

st
on

e
B

ui
ld

D
ec

is
io

n

B
us

in
es

s
C

as
e

A
na

ly
si

s
&

 D
ev

el
op

m
en

t

A
rc

hi
te

ct
ur

al
 D

ev
el

op
m

en
t

&
 R

is
k

R
ed

uc
tio

n
D

ev
el

op
m

en
t

&
 D

em
on

st
ra

tio
n

C
D

D
RE

LE
A

SE
 1

RE
LE

A
SE

 2 RE
LE

A
SE

 “
N

”

O
pe

ra
tio

ns
&

Su
pp

or
t

Pr
ot

ot
yp

es
Ite

ra
tio

n
1

Ite
ra

tio
n

2
Ite

ra
tio

n
“N

”

IC
D

C
oo

rd
in

at
ed

 D
oD

 S
ta

ke
ho

ld
er

 In
vo

lv
em

en
t

In
te

gr
at

ed
 D

T/
O

T
U

p
to

 2
 Y

ea
rs

6
to

 18
 M

on
th

s

D
ec

is
io

n
Po

in
t

Co
nt

in
uo

us
 T

ec
hn

ol
og

y/
Re

qu
ire

m
en

ts
 D

ev
el

op
m

en
t &

 M
at

ur
at

io
n

Pr
ot

ot
yp

es
D

ev
el

op
m

en
t

&
D

em
on

st
ra

tio
n

O
pe

ra
tio

ns
&

Su

pp
or

t
Ite

ra
tio

n
1

Ite
ra

tio
n

2
Ite

ra
tio

n
3

Pr
ot

ot
yp

es
D

ev
el

op
m

en
t

&
D

em
on

st
ra

tio
n

O
pe

ra
tio

ns
&

Su

pp
or

t
Ite

ra
tio

n
1

Ite
ra

tio
n

2
Ite

ra
tio

n
3

Inserting Agility in System Development

254Defense ARJ, July 2012, Vol. 19 No. 3 : 249–264

Figure 1 depicts the four phases of an Agile Business Aspect Frame-
work (DSB, 2009). A brief description of each phase follows:

•	 Business Case Analysis and Development: “Establish
the need for the proposed capability and develop the concept
for the proposed solution and perform a cost-benefit analy-
sis to quantify the benefits of the solution.”

•	 Architectural Development and Risk Reduction: “The
core architecture is built and architecturally significant
features demonstrated. Prototyping begins during this
phase and continues throughout the acquisition life cycle
to assess the viability of technologies and minimize high-
risk features.”

•	 Development and Demonstration: “The period when
operational capability is built and delivered for a discrete
number of releases. Capabilities are prioritized and parsed
into groupings to establish release baselines for the sub-
programs. Includes development of training programs and
testing in realistic environments to ensure successful field-
ing of new capabilities.”

•	 Operations and Support: “Provides materiel readiness,
user training, and operational support over the total pro-
gram life cycle.”

In addition to the emerging IT Acquisition framework, the DoD
developed an agile requirements process for IT systems called the “IT
Box” (Wells, 2009). The Joint Requirements Oversight Council Memo-
randum 008-08 stated, “IT programs are dynamic in nature and have, on
average, produced improvements in performance every 12–18 months”
(Joint Requirements Oversight Council, 2009). Recognizing the need
for performance improvements, the “IT Box” allows IT programs the
flexibility to incorporate evolving technologies. This allows for greater
agility in the current DoD requirements process.

L
E

D
O

T
M

C
E

P
S

S
A

S
E

NIS
U

E
 B

LI
G

. A
E

 1
R

U
GI

F

N
o

te
. C

D
D

 =
 C

ap
ab

ili
ti

es
 D

ev
el

o
p

m
en

t
D

o
cu

m
en

t;
 D

T
 =

 D
ir

ec
t

Te
st

; I
C

D
 =

 In
it

ia
l C

ap
ab

ili
ty

 D
o

cu
m

en
t;

 O
T

 =
 O

p
er

at
io

n
al

 T
es

t

M
at

er
ie

l
D

ev
el

op
m

en
t

D
ec

is
io

n

M
ile

st
on

e
B

ui
ld

D
ec

is
io

n

B
us

in
es

s
C

as
e

A
na

ly
si

s
&

 D
ev

el
op

m
en

t

A
rc

hi
te

ct
ur

al
 D

ev
el

op
m

en
t

&
 R

is
k

R
ed

uc
tio

n
D

ev
el

op
m

en
t

&
 D

em
on

st
ra

tio
n

C
D

D
RE

LE
A

SE
 1

RE
LE

A
SE

 2 RE
LE

A
SE

 “
N

”

O
pe

ra
tio

ns
&

Su
pp

or
t

Pr
ot

ot
yp

es
Ite

ra
tio

n
1

Ite
ra

tio
n

2
Ite

ra
tio

n
“N

”

IC
D

C
oo

rd
in

at
ed

 D
oD

 S
ta

ke
ho

ld
er

 In
vo

lv
em

en
t

In
te

gr
at

ed
 D

T/
O

T
U

p
to

 2
 Y

ea
rs

6
to

 18
 M

on
th

s

D
ec

is
io

n
Po

in
t

Co
nt

in
uo

us
 T

ec
hn

ol
og

y/
Re

qu
ire

m
en

ts
 D

ev
el

op
m

en
t &

 M
at

ur
at

io
n

Pr
ot

ot
yp

es
D

ev
el

op
m

en
t

&
D

em
on

st
ra

tio
n

O
pe

ra
tio

ns
&

Su

pp
or

t
Ite

ra
tio

n
1

Ite
ra

tio
n

2
Ite

ra
tio

n
3

Pr
ot

ot
yp

es
D

ev
el

op
m

en
t

&
D

em
on

st
ra

tio
n

O
pe

ra
tio

ns
&

Su

pp
or

t
Ite

ra
tio

n
1

Ite
ra

tio
n

2
Ite

ra
tio

n
3

A Publication of the Defense Acquisition University http://www.dau.mil

255 Defense ARJ, July 2012, Vol. 19 No. 3 : 249–264

To be used in conjunction with the framework is a guiding value set
called FIST (Fast, Inexpensive, Simple, Tiny), which may be utilized
throughout the process (Ward, 2010). The FIST approach identifies a set
of priorities and preferences that should be employed by project leaders
during the development process to streamline, accelerate, and simplify
(Ward, 2010). These values are declared in the FIST manifesto as:

Talent trumps process.

Teamwork trumps paperwork.

Leadership trumps management.

Trust trumps oversight. (Ward, 2010)

The FIST Manifesto also contains a series of principles and imple-
mentation guidelines, which can be applied to all three aspects of
development (System, Software, and Business). These principles follow:

•	 Fixed funding and floating requirements are better than
fixed requirements and floating funding.

•	 Complexity is cost.

•	 Simplicity scales. Complexity does not.

The implementation guidelines include:

•	 Minimize team size and maximize team talent.

•	 Incentivize and reward underruns.

•	 Requirements must be achievable within short time hori-
zons. (Ward, 2010)

The FIST approach describes a particular pattern of decision mak-
ing that has been successfully used on various DoD programs. Recent
examples include the Marine Corps “Harvest Hawk,” which incorporated
a gunship modification onto a C-130 airframe. This modification was
fielded just 18 months after the program was announced (Axe, 2010).
Similarly, the U.S. Air Force’s new intelligence, surveillance, and recon-

Inserting Agility in System Development

256Defense ARJ, July 2012, Vol. 19 No. 3 : 249–264

naissance aircraft—the MC-12W—f lew its first combat mission just
6 months after the contract was signed. This is a divergence from the
typical decade-long weapons system program and shows the DoD can
deliver inexpensive systems on short timelines.

In addition to rapidly delivering inexpensive systems, capabilities
produced by using the FIST approach tend to outperform more expen-
sive, complex systems when actually fielded. Examples include the Air
Force’s Condor Cluster supercomputer, which was developed for one-
tenth the cost of a traditional supercomputer and uses one-tenth the
electricity of comparable systems. It operates at 500 TFLOPS (Tera
FLoating point OPerations per Second), making it the fastest supercom-
puter in the entire DoD.

The Agile Business Aspect framework and the FIST approach are
examples of how the Business Aspect is making advancements toward
becoming more agile and adaptive to changing requirements, which is
required to keep pace with today’s rapidly changing environment.

System Aspect
The System Aspect addresses the technical and technical man-

agement pieces of the system and serves as the interface between
management and engineers. Utilizing various systems engineering
standards and guides, operational requirements are decomposed into
technical requirements. The System Aspect holds the overall responsi-
bility for the development of the system given the contractual, schedule,
and fiscal constraints of the Business Aspect.

Though the systems engineering process is generally portrayed in a
waterfall-like fashion, the systems engineering community has moved
toward an incremental delivery approach. The (DAG) identifies incre-
mental development as a capability that Defense Acquisition Guidebook
that “is developed and fielded in increments with each successive incre-
ment building upon earlier increments to achieve an overall capability”.
This incremental approach relies heavily on prototyping and allows for
technology maturation in subsequent releases (DAU, 2010). The move
toward an incremental delivery allows the systems engineering process
to better adapt to change than the waterfall-like implementation. How-
ever, with the rapid rate of change, the incorporation of an incremental
model alone may not be enough. Currently, no agile systems engineering
frameworks, principles, or values are in place to guide the System Aspect.

A Publication of the Defense Acquisition University http://www.dau.mil

257 Defense ARJ, July 2012, Vol. 19 No. 3 : 249–264

Software Aspect
The Software Aspect addresses the software items contained in the

SIS. Provided a set of requirements from the System Aspect, the Soft-
ware Aspect creates the software items required for the system.

Software development has been on a continuous process improve-
ment track for decades. Initially, the waterfall software development
methodology was used, where software was developed in one long release
cycle (Royce, 1970, pp. 1–9), although this approach was described as
“risky and invites failure.” The waterfall software development meth-
odology provides the fundamental steps required to develop software.
However, it has one major flaw in that it assumes that once the require-
ments process is complete, the requirements will remain unchanged
throughout the development life cycle. This assumption rarely holds
true in practice as change is inevitable in all large software projects
(Sommerville, 2004).

Long waterfall-like development cycles do not allow for require-
ments changes, a flaw identified by Royce in his original paper. Breaking
software development cycles into a series of increments allows one to
better adapt to changing requirements. In the incremental model, an
increment is a potentially shippable piece of functionality. Incremental
delivery allows the user to gain value from a portion of the system prior
to the entire system being released.

Agile Software Development

Though seen as an improvement over the waterfall software develop-
ment methodology, the incremental approach has several disadvantages;
namely, the majority of requirements must still be known up-front (U.S.
Air Force, 2003). Agile processes have emerged to match the pace in
which change is encountered during software development.

Agile software development is a broad term used to describe devel-
opment methodologies that adhere to a set of values and principles
defined by the Agile Manifesto (Beedle et al., 2001). The Agile Mani-
festo was formed when a group of 12 people calling themselves the Agile
Alliance gathered to find an alternative to the current documentation-
driven, heavyweight software development process (Beedle et al., 2001).
Through this effort, they framed the following set of values to improve
the way software is developed (Beedle et al., 2001):

Inserting Agility in System Development

258Defense ARJ, July 2012, Vol. 19 No. 3 : 249–264

•	 Individuals	and	interactions	over	processes	and	tools;

•	 Working	software	over	comprehensive	documentation;

•	 Customer	collaboration	over	contract	negotiation;	and

•	 Responding	to	change	over	following	a	plan.

The Agile Manifesto also defines the following principles, which are
used to separate agile practices from their heavyweight counterparts
(Martin & Martin, 2006):

•	 Our highest priority is to satisfy the customer through early
and continuous delivery of valuable software.

•	 Welcome changing requirements, even late in development.
Agile processes harness change for the customer’s competi-
tive advantage.

•	 Deliver working software frequently, from a couple of weeks
to a couple of months, with a preference to the shorter
timescale.

•	 Working software is the primary measure of progress.

•	 Agile processes promote sustainable development. The
sponsors, developers, and users should be able to maintain
a constant pace indefinitely.

•	 Simplicity—the art of maximizing the amount of work not
done—is essential.

The application of these principles varies in practice as no pre-
determined number of principles must be utilized for a development
methodology to be deemed “agile.” Several development methodol-
ogies are in use today; however, a survey conducted by VersionOne,
which included almost 1,700 individuals and 71 countries, found Scrum
and eXtreme Programming to be the most widely followed method-
ologies (VersionOne, 2007). Other common methodologies include
Crystal, Dynamic Systems Development Methodology, and Lean Soft-
ware Development.

A Publication of the Defense Acquisition University http://www.dau.mil

259 Defense ARJ, July 2012, Vol. 19 No. 3 : 249–264

Scrum
Scrum is a framework used for project management, which is

designed for projects where it is difficult to look ahead (Brede Moe, Ding-
søyr, & Dybå, 2008, pp. 76–85). It provides a framework with which these
activities will be executed (Figure 2). Scrum comprises self-organizing
and self-managing teams that release a potentially shippable product in
sprints (increments) of 2–4 weeks.

FIGURE 2. SCRUM FRAMEWORK

Note. Adapted from The SCRUM process/SCRUM framework [Web page], by Expert
Program Management (n.d.) at http://www.expertprogrammanagement.com/2010/08/
the-scrum-process/.

The process starts with a product backlog (requirements) that is
prioritized by the user prior to the start of each sprint. The team then
selects what can be accomplished within the designated sprint duration;
however, the team must select the requirements in the order specified by
the user. These selected requirements then become the sprint backlog.
The items on the sprint backlog are what will be delivered to the cus-
tomer at the end of the sprint.

Product
Backlog

Sprint
Backlog

24
Hours

2–4
Weeks

Potentially Shippable
Product Increment

Inserting Agility in System Development

260Defense ARJ, July 2012, Vol. 19 No. 3 : 249–264

eXtreme Programming
Whereas Scrum is a process to manage a product, eXtreme Program-

ming (XP) is an agile development methodology focused on software
development as a whole. XP is one of the most well-documented agile
methodologies, and it consists of the following 12 rules (Cohen, Lindvall,
& Costa, 2003):

1. The Planning 2. Small Releases 3. System 4. Simple Design
Game Metaphor

5. Continuous 6. Refactoring 7. Pair 8. Collective Code
Testing Programming Ownership

9. Continuous 10. 40-Hour Work 11. On-site 12. Coding
Integration Week Customer Standards

No set number of rules need be practiced by a team to claim they
are doing XP (Wolak, 2001). However, the strength of XP is in the com-
bination of the rules and not implementing a single rule alone (Cohen,
Lindvall, & Costa, 2003).

The Software Aspect has a greater selection of agile methodologies
to utilize during development, allowing for valuable resources when
inserting agility within the Software Aspect.

Maintaining Agility Between Aspects
With the growing complexity of today’s systems, the systems engi-

neering effort becomes increasingly important to success. Currently,
both the Business and Software Aspects have an agile framework and a
proven set of agile values to help guide development. However, travers-
ing from the Business Aspect to the Software Aspect requires passing
through the System Aspect, which could hinder the agile advances made
in the other aspects. The System Aspect’s ability to respond to the agile
processes developed within the Business Aspect, as well as fostering
the agile processes in the Software Aspect, could play a pivotal role in
overall system success.

Agile Principles
When combining the FIST implementation guidelines and prin-

ciples and comparing them against similar principles, much constancy
is evident.

A Publication of the Defense Acquisition University http://www.dau.mil

261 Defense ARJ, July 2012, Vol. 19 No. 3 : 249–264

Though no one-to-one relationship exists between the FIST prin-
ciples/guidelines and the Agile Manifesto principles, they all remain
important complementary principles while developing a complete agile
organization.

Agile Practices
Agile projects use various practices to implement the Agile Values

and Principles identified. When considering both the Software and Busi-
ness Aspects, a common set of practices emerges. These practices are:

Incremental Development Small Teams

Iterative Development Time Boxing

Short Time-lines Lean Initiatives

Retrospectives (Lessons Learned) Prototyping

Empowered/Self-organizing/
Managing Teams

Continuous User Involvement

Prioritized Product Backlog
(Requirements)

Co-located Teams

Implementation of these practices varies greatly from project to proj-
ect. Using co-located teams as an example, a large program retrofitting
military aircraft may be structured in a way to have the teams located
on the same installation so that the contracting, development, and test-
ing activities are located on the same installation. This contrasts with
software development teams, which implement the practice of co-located
teams by having the development team work in the same room.

These practices are well-documented and demonstrated and offer
great promise for helping deliver affordable systems that are available
when needed and effective when used. By implementing these proven
practices, we can increase agility with the Systems Aspect.

What to Expect from
Implementing Agile Practices

Studies have been conducted over the last decade documenting the
results when utilizing agile practices. Rally Software Development Cor-
poration found an average 37 percent decrease in time-to-market and
a 16 percent increase in productivity (Software Engineering Institute,

Inserting Agility in System Development

262Defense ARJ, July 2012, Vol. 19 No. 3 : 249–264

n.d.). Findings from seven individual studies found a benefit-to-cost,
productivity, and quality ranging from 14 percent to 93 percent (Rico,
2008). The averages from the study can be found below:

67 percent, average increase in productivity,

65 percent average increase in quality, and

49 percent improvement in cost (Rico, 2008).

Conclusions

More than ever, military technology programs need to rapidly field
systems within tight budget constraints and still maintain an ability to
respond to change. The Agile approach provides a useful starting point
to achieve these objectives of speed, thrift, and agility.

Inserting agility within an organization is a journey, not a desti-
nation. Agile practices that work for one organization may not be as
effective when implemented at another organization. Conversely, agile
practices found effective within an organization last year may no longer
be as effective as their initial implementation due to external, internal,
or personnel changes. These changes may require periodic modification
or even removal of practices to remain competitive in today’s fast-paced
world of IT. It is not a single practice that makes an organization agile,
but a combination of practices.

A Publication of the Defense Acquisition University http://www.dau.mil

263 Defense ARJ, July 2012, Vol. 19 No. 3 : 249–264

Author Biographies
Professor Matthew R. Kennedy is a pro-
fessor of Software Engineering at the Defense
Acquisition University. He served in the U.S.
Air Force as a network intelligence analyst
and has more than 10 years of experience in
Information Technology. Professor Kennedy
holds a bachelor’s degree from Northern
Illinois University and a master’s degree
from the University of Illinois, both in Com-
puter Science.

(E-mail address: Matthew.Kennedy@dau.mil)

Lt Col Dan Ward, USAF, is currently serving
as chief, Acquisition Innovation at the Penta-
gon. He holds a bachelor’s in Electrical
Engineering from Clarkson University, a
master’s in Engineering Management from
Western New England College, and a master’s
in Systems Engineering from the Air Force
Institute of Technology and is Level III certi-
fied in two acquisition career fields: Program
Management, and Systems Planning, Research,
Development, and Engineering.

(E-mail address: daniel.ward@us.af.mil)

 

Inserting Agility in System Development

264Defense ARJ, July 2012, Vol. 19 No. 3 : 249–264

References
Axe, D. (2010). Marines’ instant gunship blasts Taliban, Pentagon bureaucracy. Wired.

Retrieved from http://www.wired.com/dangerroom/2010/11/marines-instant-gunship-

blasts-taliban-pentagon-bureaucracy/

Beedle, M., Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Highsmith, J., … Thomas,

D. (2001). Manifesto for agile software development. Retrieved from

http://agilemanifesto.org/

Brede Moe, N., Dingsøyr, T., & Dybå, T. (2008). Understanding self-organizing teams in agile

software development. Presentation at 19th Australian Software Engineering Conference,

Perth, Australia, March 25–28.

Cohen, D., Lindvall, M., & Costa, P. (2003). Agile software development. New York: Data and

Analysis Center for Software.

Defense Acquisition University. (2010). Defense acquisition guidebook. Retrieved from

https://dap.dau.mil/Pages/Default.aspx

Defense Science Board Task Force. (2009). Department of Defense policies and procedures

for the acquisition of information technology. Washington, DC: Office of the Under

Secretary of Defense for Acquisition, Technology and Logistics.

Department of Defense. (2008). Operation of the defense acquisition system. Washington, DC:

Office of the Under Secretary of Defense for Acquisition, Technology and Logistics.

Martin, R. C., & Martin, M. (2006). Agile principles, patterns, and practices in C#. Boston, MA:

Prentice Hall.

National Defense Authorization Act for Fiscal Year 2010, Pub. L. 111–84 (2009).

Rico, D. F. (2008). What is the Return on Investment (ROI) of agile methods? Retrieved from

http://www.afei.org/WorkingGroups/ADAPT/Documents/rico08a[1].pdf

Royce, W. W. (1970). Managing the development of large software systems. Retrieved from

http://leadinganswers.typepad.com/leading_answers/files/original_waterfall_paper_

winston_royce.pdfIEEE

Software Engineering Institute–Carnegie Mellon. (n.d.) Brief history of CMMI. Retrieved from

http://www.sei.cmu.edu/library/assets/cmmihistory.pdf

Sommerville, I. (2004). Software engineering 7/E. Boston: Addison-Wesley.

U.S. Air Force. (2003). Guidelines for successful acquisition and management of software-

intensive systems. Ogden, UT: Software Technology Support Center.

VersionOne. (2007). 2nd annual survey: The state of agile development. Retrieved from

http://www.versionone.com/pdf/StateOfAgileDevelopment2_Summary.pdf

Ward, D. (2010, November-December). The FIST manifesto. Defense AT&L, 39(6), 31–32.

Wells, C. (2009). Information technology requirements oversight and management (The

JCIDS “IT box”) [PowerPoint slides]. Leveraging technology evolution for information

technology systems (JROCM 008-08). Retrieved from https://acc.dau.mil/adl/

enUS/421037/file/55578/IT%20Box%20Overview.pdf

Wolak, C. M. (2001). Extreme programming (XP) uncovered. Ft. Lauderdale, FL: Graduate

School of Computer and Information Sciences, Nova Southeastern University.

